X

PERFORMANCE
TEST SOLUTIONS
FOR ORACLE

Database2test

Release 3

User’s Guide

> Table of Contents

Preface

Preparing to use Database2test
Requirements
Installation
Running Database2test
Configuring Database2test

The Testing Process
How Database2test Works
Creating a Database Connection Pool

Creating a Database Test Script
Create a SQL database statement
Compound SQL database statement
Pause statement
Create a PL*SQL database statement
Establishing the baseline execution time
Defining the target load

Parameterize a Test Script
Adding script parameters
Defining database statement parameters
Parameter types
Parameter Properties

Running a Performance Test
Defining the test scenario
Defining the overall test goal

Analyzing The Test Results

What It Means

(SIS)

14
15
16
16
17
17
19

20
20
22
22
22

25
25
26
31

33

> Preface

Welcome to the TestNext Database2test User’s Guide. This guide provides a step-by-step
overview to using TestNext Database2test.

Database2test is a performance test tool dedicated to the Oracle Database Server.

It can be used to simulate a (heavy) load on a single or multiple database instances to test its
strength or to analyze overall performance under different load types.

You can use it to make a graphical analysis of performance or to test your database server
behavior under heavy concurrent load.

With Database2test you can define and run a performance test in a few steps using the
powerful wizards.

During the performance test a lot of metrics, such as executions times and database
connections are captured and logged.

At the end of a test the test results are presented in various automatically generated
graphical reports; the starting point for analysis.

) Preparing to use Database2test

Requirements

Database2test requires your computing environment meets some minimum requirements.
Database2test should be installed on a reasonably modern Windows desktop with at least
1.2GHz processor and 512Mb of RAM (memory).

Database2test is a 100% Java application and requires a fully compliant JVM 1.6 or higher.
We recommend you to download the distribution of Database2test including the Java 6
runtime.

Database2test has been tested and should run correctly under Windows (NT, 2000, XP, Vista
and Windows 7).

Database2test contains some sample scripts and these sample scripts are a good starting
point for getting familiar with Database2test.

Certified Oracle Database Servers
Database2test is build on top of the Oracle 11g JDBC Drivers and therefore certified with the
following database releases:

® Oracle Server 11g,
® QOracle Server 10.2.0.2 and higher, and
® Oracle Server 9.2.0.4 and higher.

Installation

Installing Database2test is a snap. Database2test is available as a Windows installer. Launch
the installer and install the full functional version into the directory where you want
Database2test to be installed.

Please note that installing Database2test will overwrite your existing installation. However,
scripts, settings and registrations won'’t be lost.

Running Database2test
After the installation has completed the installer has created start menu items to launch (or
uninstall) Database2test.

Note: If the start-up fails, ensure that the JAVA_ HOME variable points to the location where
you have installed Java 6 or higher. This variable is set in the <database2test
home>/bin/setenv.bat OS script.

Configuring Database2test

If Database2test is started for the first time you are automatically directed to the Setup
section (see 1).

The only required configuration setting for Database2test is at least one valid database
connection pool (see 2).

Optionally you can save the output to a local output folder. This option is especially
interesting for testing scripts.

By default all database statements are committed immediately (auto committed). However,
when you create a compound SQL statement, i.e. a statement containing multiple sub
statements, you can execute this statement as a single transaction by disabling the auto
commit flag (see 3).

You can instruct Database2test to always fetch the complete result set (see 4)

Sometimes it can be handy to save the query result set to a XML file. We strongly encourage
you to disable this option during the ‘real’ test.

The same applies to the option to enable the DBMS_OUTPUT messages and save the
database messages to the log file.

r
¢ TestNext Software - Database2test 3

[E=SEIER =)

Orade Database Connection Pools

7l No Database Connection Pools
M License A
' d Fress "Create" € to create a new cannection paol

@ Help and Support

e g2

Output Falder: C:Progr; T@ex(Software\Database2test 3lout =}

Auto-commit database statements

-
Always fetch query result set]

Save query result set as XML to output folder [7] & for sari
Save DBMS_OUTPUT messages tolog fie [] 4

> The Testing Process

Typically a performance test is a two step process and consists of the following tests:

® |oadtest, and
e Stress test (optional)

The difference between a load and stress test is the objective of the test. For a stress test you
are interested in the maximum load the Oracle Database server can handle.

For a load test you are interested in the performance and resource usage of the Oracle
Database during typical production load. Database2test is suitable for both type of tests.
Although the stress test is an optional test it does provide some useful input for future
capacity planning.

The first step for conducting a load test is to develop one or more test scenarios or test cases.
A test scenario defines the typical working conditions. A test scenario defines (1) a set of
database statements (SQL and/or PL*SQL) and (2) the total number of statement executions,
i.e. the target load.

The creation process for a stress test is similar to a load test. The test scenario is often based
on the same set of scripts only the number of statement executions, in other words, the
target load is different.

) How Database2test Works

The load on the database is generated through Database2test by executing a set of database
statements concurrently; simulating multiple users working together.

For the load you can choose between two types of database statements, SQL statements and
PL*SQL statements. These database statements are captured into test scripts. A script holds
the definition of the database statement.

During the test one or more instances of the script are executed on the database server
through one or more connection pools. These instances are called statement executions.

Each script is associated with a connection pool. A connection pool is a set of physical
database connections.

You can specify the desired pool size, that is, the number of database connections that will
be established to generate the load. These database connections are created during the
initialization of the load test.

When you choose to manage the connection pool by Database2test the number of database
connections of the pool can vary during the test. This depends on the scheduled load.

The following figure shows a very simple test scenario involving a single script, a connection

pool and the database. To execute a single SQL statement multiple times concurrently on an
Oracle database.

PL/SGL
saL

Connection pool

Oracle

A more realistic figure is a test scenario involving multiple test scripts using multiple
connection pools.

Connection pool

Connection pool

You can even opt for multiple database instances and so called compound SQL statements. A
compound SQL statement consist of multiple database statements.

In other words, Database2test has a very flexible architecture.

The first step to develop a load test is to create one or more connection pools.

) Creating a database Connection Pool

In this section you will learn how to create a Connection Pool. A connection pool is a cache of
database connections maintained so that the connections can be reused by the
database2test engine when future requests to the database are required. The connection
pool is created during initialization of the performance test.

The database connections of the pool are used for each script execution. Each test script is
assigned a connection pool.

You can share a connection pool by multiple scripts but you can also choose to create
multiple connection pools for multiple scripts.

To create a connection pool navigate to the Setup section (see 1). Then press the “Create”
button to launch the wizard (see 2).

- \
3¢ TestMext Software - Database2test 3 [E=ESE

Oracle Database Connection Pools b 3

\3 Test

@ Setup ?Q 1

21 No Database Connection Pools
S License
L 4 Press "Create" & to create a new connection pool

\9 Help and Support

(e iy 2

Output Folder: C:\Program Files\TestNext Software\Database 2test 3\out =]
Auto-commit database statements
Always fitch query result set]

Save query result set as XML to output folder [(Use this aption for script development orly.)

Save DEMS_OUTPUT messages to log file (=}

The creation process of a database connection pool is a 4-step wizard. The first step is to
specify the connection type. The connection type tells Database2test how to gather the
required connect descriptor for opening the database connections.

You can select a predefined TNS service name. Database2test will show you a list with all
available predefined connect descriptors available on the local machine.

You can select the ‘Basic’ connection type. Database2test will offer you a form to fill out the
minimum (basic) information to establish a database connection.

Alternatively, you can provide your own (custom) connect descriptor.

i« '1
x Create Database Connection Pocl - Connection Type (1 of 4) &J

Spedfy the connection myp=:

5 @) Transparznt Metwork Substrate (TMS) Servize Mame
N
~n i vice)
L A) ! ! \
o ") Basic [Host,Port and SIDVService)
¥ () Custon (Connect Descriptor)

When you choose to select a TNS entry you can select the Oracle Home and the
corresponding TNS entry.

When the environment variable TNS_ADMIN is set, also the TNS entries from that
tnsnames.ora file will be selectable.

Alternatively, you can add the entries from a tnsnames.ora configuration file manually.

P A’
(Create Database Connection Poel - Connection Details (2 of) ﬁ

Spedfy tha TNS zervice name for the database:

- Orade Home
— \CraCb1ig_homz1 - |
[yl | THS Servce Narre:
Tt ; :
h CE1120 -
i b -
— Add entries from msnames. ora file

43 Pravious

10

When you choose to fill out the basic information to establish a database connection you
have to provide the database host, the listener port and the Service Name or System

identifier (SID):

-
x Create Database Connection Pool - Connection Details (2 of 5)

==

Specify the host, port and service:
Database Host Port
A rdbms. testnext. local 1521

o~ .
= @ Service Name

s

o) db1120
- (™) System ID (SID)
e
<3 Previous l l Next &3] [q Cancel l

The next step is to provide the credentials, i.e. username, password and the default role (if
applicable). You are strongly encouraged to verify the credentials. When the test succeeds

you know that the provided information is valid.

-
(Create Database Connection Pool - Authentication (3 of 3)

S

Spedfy a username, password and role to establish the connection:

Username:
SCOTT
Password:
-~ - (1217}
) Role:
. DEFAULT

-

43 Previous] |

Mext B

| [@ |

The next step is to specify the size of the connection pool. You can choose to specify a fixed
size or you can let Database2test to manage the connection pool size for you. When you let

Database2test to manage the connection pool size it will always try to minimize the size of
the connection pool. During a load test Database2test will increment the pool size when

necessary.

11

During the initialization of the load test Database2test will open all database connections

first.
During the test Database2test will pick an inactive connection from the pool to execute a
database statement and release the connection as soon as the database statement is

executed and so on.

-
(Create Database Connection Pool - Connection Pool Size (4 of 5) u

Spedfy the database connection pool size:

=) —:_.L Database connection pool size: 10 = Auto

43 Previous H Next B | l qCanceI]

The last step is to provide a unique name for the connection pool. If possible Database2test
will suggest a name based on all information provided in the previous steps.

.
(Create Database Cannection Poal - Connection Name (5 of 3) M

Specify & unique name for the database connection pool:

Connection Pool Name:
"’:-'-—-’_.J' ORADE11G_HOME1-DB1120-5COTT-ALTO

Select ‘Finish’ to create the connection pool and close the wizard.

The created connection pool is now added to the available connection pools.
You can always edit the connection pool (see 1), test the connection pool (see 2) or remove
the connection pool (see 3).

€ TestNext Software - Database2test :

Database2test 3 - releasing Oracle Perfarmance Patential.

Oreule Dalabase Curmelon Puuls

ORANR116G_HNMF 1-DR 17 20-SC0TT-ALITO Size: futn SCOTT

Outout Folder: C:\Program les\esthzxt Software\Databasz2test J\out

Always fetch guery resultset

Auto-commit database statements:

Save query result set as XML to output folder [(Us= this option for script development only.)
Savz DEMS

TestneXt software

reate another connection pool or start to create a test script.

13

) Creating a Database Test Script

In this section you will learn how to create a Database2test test script.

Note: Before you start to create a script make sure that you have created a valid database
connection pool first (see Creating a Connection Pool).

Launch Database2test and select the Test section (see 1).

Database2test let you define two types of database scripts. SQL statements and/or PL*SQL
statements.

Select the preferred script type to add a new SQL statement (see 2) or a new PL*SQL
statement (see 3) to the Test Suite.

K Testhlext Software - Database2test 3 ===

Database2test 3 - releasing Oracle Performance Potential.
Test Database Connecton Pool {derauit)
ORADE11G_HOMEL DE1120 SCOTT ALTO -]
Test Suite
BT PLSQL Example - DBMS_OUTPUT PL=SQL Example - DBMS_OUTPLT -~ - - SR E X
{57 5QL Example - Spatial Query SCL Example - Spatial Query . - _ LOEE X
N — 1 57 5L Example Bind Variable SGL Example: Query With Parameter -~ - - SOREH X
&

0 Helpand Support

2 3

P Y [sa H TPepa |
Test Goal
Run the load test for 3 minutes with a madmum of 20 active (simuitaneous) s:atement executicns. @]
TestNonitor
Performance (%) Exec, Time Delay (ms) Load (stmtsimin} Active Statemerts
Elapsed {mm:ss): 0c:00 . - o w
Remaiiing {nm:ss): 0c:00
Active Statements: 0
Pending Statements:)
Statenents PassedFailed: 00 .
Databsse Performance: 0%
Avg. Exec. TmeCelav: 0 msec.
Databsse Connecions: 0
Test status: 1de
— o 0 -200 0 0 o o

[start Press Start to run the performance tesz,

stnexq software

14

Create a SQL database statement

When you select to create a SQL statement script the following editor pops up:

”
Create Mew SQL Script

o 25 o

~ Description

~ Database Connection Pool

||
- Default Database Connection P -
“1\.\
~ Oracle Database SQL Statement(s]@ Y
select
42
from
DUAL

3

[] Use parameters as bind variables to minimize hard parses (if applicable).

Hint: *¥'ou can use script parameters for the Oracle Database SQL Statement(s) . A script parameter
starts with a colon (") follewed by the script parameter name and ends with a colon.

For example you can use a script parameter for the where clause az fo

w5 ...where id = :ID:

o][@]

First, you may enter an appropriate description for the script (see 1). The description will be
visible in the Test Suite.

When you omit the description the file location of the script will be shown instead.

15

The second step is to select the database connection pool (see 2). You can either select the
default database connection pool or select a database connection pool explicitly. The latter
option is mandatory when you decide to use more than one database connection pool for
the test using multiple scripts (see How Database2test works).

The next step is to enter a SQL-statement (see 3). Make sure that you enter a valid SQL
statement. The SQL statement should be valid for the selected database connection pool.

Compound SQL-statement

You can create a simple SQL-statement or a compound SQL-statement. A simple SQL-
statement is a single database statement. A compound SQL-statement is a SQL statement
that consists of multiple (DML) SQL sub statements. The sub statements are separated by a
semicolon.

During the test the system will execute the sub statements consecutively.

By setting the global setting auto-commit to false (see settings tab) the compound SQL-
statement can be executed as a single transaction.

Pause statement

You can also insert a special ‘pause statement’ to a compound SQL-statement. The syntaxis is
PAUSE <seconds>;

The system will pause the execution of the compound statement for the given number of
seconds.

Note that the duration of a pause statement will not be added up to the overall execution
time of the SQL-statement.

Example pause statement:
insert into <table> values (<value>); --insert a record

PAUSE 10; -- wait for 10 seconds
delete from <table>; -- delete all records

Hint: You can use script parameters for the Oracle Database SQL Statement . A script
parameter starts with a colon (':') followed by the script parameter name and ends with a
colon.

For example you can use a script parameter for the where clause as follows: select xxx from
table where id = :ID:

When you parameterize the where-clause of the SQL statement you have the option to use
the parameter as a bind variable (see 4). This will minimize the number of hard parses during
the test and may better reflect the application behavior. Consult your database administrator
for details.

16

Create a PL*SQL database statement
Creating a PL*SQL statement is equal to creating a SQL statement.
The only difference is that you cannot use a parameter as a bind variable and you do not
have the option to create a compound PL*SQL statement.

Establishing the baseline execution time
The next step after creating a database test script is to capture the baseline execution time
for the database statement in the script.
The baseline execution time is the (average) execution time for the database statement on
the database server.
This is a useful and mandatory metric for establishing a point of reference. During the test
the performance is determined relative to this metric.

Note: The baseline execution time is a mandatory metric. You cannot run a performance test
without establishing the baseline execution time first!.

After saving a new database test script a dialog will popup automatically to capture the
baseline execution time.

Alternatively, you can always (re)capture the baseline execution time by clicking the

corresponding button (see 1)

i@ Setup

i .
L _icense
L4

e -elp end Suaport

& TestNext Software - Database2test 3

Test Database Connection Poal (defaul)

a
{ :} Test
Test suite

== = |

DRADB11G_HOME 1-DB1120-MDEMO-ALTO - }
[¥] &-[B] PLSQL Example - DBMS_OUTPUT PLSQL Example - DBMS_OUTRUT WHEE N -
-5 SQL Example - Spatial Query SOL Example - Spatial Query - - = HE X

- Database Comection Pool ~DefaultDatabase Conrection Pool —

.. Statement Template C4Program Files\Texthext Softuare|Datshase -est 2AsrintieramplesiSl Frample - Snatial uery.ql

$-SQLPLTSQL sub-Statements No 1 =

}--Use bind Varsbles Ne

| Baselne Exeation g 98 millseconds (=36734 executions per hour.)

L. Target Load Capture Baseline Execution Time =

-~ Last Message cormple Size

%9 Parameters
5] QL Exampietind v4 | | Eeselinexeuton tme sample size: Sk pause statenent(s). G EE R

. Database Comnectio

i Statement Template! ble.sql b

D ai] l Bl sqQL H Bl PL/SQL]

Test Goal T
Fun the oad test for 3 ninutes () capture @5

Test Monitor

Elapsed (mm:ss): 00:00
Kemainirg (mm:ss): R
Active Statements: 0
Fending Statements: 0

Statements Passed/Failed: 0 /0
Datebase Performance: 0%
Ava, Exec. Time Delay:
Database Connections: 0

Test status: Idle

Performance (%}
200

0 msec.

— 0 0

Exec. Time Delay (ms)
200

-0

Load (stmtsmin}
a0

Active Statements
W

> start Press Start to run te perfar

17

A dialog pops up with the option to set the sample size. The sample size tells Database2test
how many times the statement should be executed on the Oracle Database to establish a
good average execution time.

The sample size should depend on whether the database script has script parameters or not.
If the statement is static, i.e. has no parameters, the sample size could be low (default 10).
However, when the database script is dynamic, i.e. has script parameters, the sample size
should be sufficiently high to get a representative performance baseline low (default 25).

When you have included one or more pause statements you can opt to ignore the pause
statements during establishing the baseline execution time by selecting the checkbox (see 3).
Note that this option is only valid for establishing the baseline execution time. During the test
the pause statements will never be ignored.

When the baseline execution time is being captured the following dialog is visible showing
the intermediate results.

’
Capture Baseline Execution Time ﬁ

- Statement execution time {millise cords)
Last execution time

Average execution time

Execution count

18

Defining the target load

After establishing the baseline execution time you should define the target load for the script

during the performance test.

To define the target load you should press the corresponding button (see 1). A dialog shows
up to specify the target load for the test script.
You should specify the number of statement executions (see 2) and the corresponding time

interval (see 3).

Optionally, you can dynamically increase the load during the test (see 4). The latter option is
especially interesting for conducting a stress test.

% TestNext Software - Datbase2test 3

Test Database Connection Pocl (defaul?)

B Test g [ORADEL1G_HCME 1-DB1120-MyDEMO-AUTO
Test Suite

Database2test 3 - feleasing Oracle Performance Potential,

|l=(=] = |

@ elp end Susport

Use Eind Variables

TargetLoad

Last Message

B4 Parameters
B3] 5QL Example Bind
Database Connectig

Statement Templaty

Baselne Execution Tme

(2] PLSQL Example - DBMS_OUTPUT PL=5QL Example - DBMS_OUTPUT

@ s :
©1-[3] SQL Example - Spatial Query SQL Exanple - Spatial Query
7l i | Database Conncction Pool Default Database Conrcction Pool
LA _icense
L d Statement Template

No

91 milliseconds (=39560 executins per hour.)

XK Target Lad

Specfy the trgetlosd for soript "SQL Example - Spatial Query”™

C
1] exeattion(s per [second

Increase load by 1 eV

Test Goal

Fun the oad test for 3 ninutes

= L

minut=(s}

3 [= [0w

Ci\Program Files Testilext Software\Database2:est Jsaripts\examplesiSQL Example - Spatial Query.sal
SQLPL™SQL Sub-Statements No

ble.<cl

& aid

—
m

YOE@ R

_"P sQL

L s |

Test Monitor

Statements Passed Failed: 0 f

Avg. Exec. Time Delay:
Database Connections: 0

Elapsed [mm:ss): 00:
Femainirg (mm:ss): 00
Active Statements: 0
Fending Statements: 0

Pt lunniaime (%)

00 00 00

00

0

Datsbase Performance: 0%
0 msec.

Test status: Idle

— 0 0 -0

Exee. Tine Delay (ins)

i

Luad (stntsniny

£l

Adtive Statenenls

Refresh Interval w

[start Press Startto run te performance test.

Testnext software

Press OK to save the target load.

19

) Parameterize a Test Script

When you create a test script, you can also parameterize the database statement by
replacing literal values by parameters. At runtime the dynamic parameter values will be
generated based on the corresponding parameter definition. Parameterization is very useful
to conduct a realistic performance test since you bypass the caching mechanism of the
database as much as possible.

Tip: Before you parameterize a database statement make sure that the statement runs fine.

Adding script parameters
The first step to parameterization is to add one or more parameters to a database statement.

To add a parameter to a database statement you should replace a literal value by the
parameter name enclosed by colons, i.e. :<parameter name>:.

The script editor will automatically recognize this parameter construct.

For example, to replace the literal ID of a where-clause you should replace the SQL
statement:

select OBJ.object_name from OBJ where OBJ.id = 2517
by

select OBJ.object_name from OBJ where OBJ. id = :OBJECT_ID:

Note: The parameter name is limited to 32 characters including underscores.

£ Edit Datanase SQL Saript 5

Descripion

£QL Examplke: Query With Faramzter

Diztabase Zonnzction Paal

-- Defaut Database Cornection Poal - -

Crack Databass SQL Satzment(s)
zelect
OBEJ.ckJject_neme
Erom
UbJ
where
0BT, =d — :DECI!C'T‘_ID:

20

When you create a script including one or more parameters the script type indication of the
script icon changes from black into red (see 1).
All script parameters are visible (see 2) and you can modify the parameter definition by

clicking the corresponding edit button (see 3) or by double clicking the parameter name.

Test Suite

E SQL Example - Spatial Query

e Connection Pool

late
L ﬂ-statemems

i--Use Bind Variables

SQLIPL

i--Baseline Execution Time

Target Load 2
Last ;
& 5 Para s

L. LONG
[¥] -5 5QL Example Bind Variable

2] PLSQL Example - DBMS_OUTPUT PL=SGL Example - DBMS_OUTPUT

SQL Example - Spatial Query

- Default Database Connection Pool —

C:'Program Files\TestMext Software\Database2test 3lscripts\examples\SQL Example - Spatial Query.sdl
No

No

91 millizeconds (=32560 executions per hour.)

1 execution(s) per second

nfa

Random number between -100 and -25
Random number between 25 and 60

SQL Example: Query With Parameter

= - WNOAA X -
= = QOpAx

m

3®%

B Y L
YOREX -

@ g

| Dea]wDasm

Tip: The included sample scripts are a good starting point for getting familiar with

parameterization.

21

Defining database statement parameters

After adding parameters to a database statement you have to define the parameter. For each
parameter added to the database statement the parameter wizard will open automatically to
help you define in two steps the parameter type and corresponding parameter properties.

Parameter types
Each parameter should have a parameter type. You can choose between five different
parameter types:

e Constant value

® Random number

e Random text

e Sequence number
e List of values (LOV)

. N
Create Parameter - 5tep 1 of 2 ﬂ

specfy the parameser type for parameter LAT:

8 Ipsum (7 Constant value
]
- (@ Random number

43TA : 9 () Random text

Sequence nunber

(7 List of valucs

Select the preferred parameter type and press Next.

22

Parameter Properties
The next step is to define the parameter properties for the selected parameter type of the
previous step.

For a random number you should define the minimum (inclusive) and maximum (inclusive)

for the random number parameter. Note that the precision (that is, digits to the right of the

decimal point) of the random values during the test are deduced from the values entered.

Create Farameter - Step 2of 2 [&J

Specify the randem number range for parameter LAT.

123 Ipsum
O Randum nuirber belween |(-100 and -25

487 A1
BrA g 9 _—:' " predision f the random numb

Lorem =
-

1ojop

m
L]

l £ Pavous ” . Firigh J l & carcel J

For a random alphanumeric value (random text) you have to provide the minimum length
and the maximum length. At runtime the parameter value will consist of at least minimum
length and no more than maximum length arbitrary ASCII characters.

For a sequence number you have to provide the start and increment value. Then for each
virtual user the parameter value will be increased by the increment value.

23

For a list of values you have to select the file containing the list of values. The list of values file is a flat
ASCII file with the file extension .lov.

The file consists of an optional header followed by records. Each record is one line of the text file and
each value of a record is separated from the next by a semicolon or a tab stop.

The values will be cyclically reused as often as necessary.

Example list of values:

Customer ID;Sales Rep. ID;Product ID
380;10;5090

370;20;5100

365;25;5225

400;35;6000

625;55;8100

700;42;7500

etc...

The next wizard step after selecting the lov file is to select the preferred column.
For following screenshot the column containing the Customer ID’s is selected.

' ™Y
Create Parameter - Step 3 of 3 g

Specty a column containing the list ot valLes for paremeter LAT.

a Custeme- ID | Sales Rep. ID Product 1D nfa | nf
Ipsum <50

1,2,3.... %0
e 37 EER 5:00
487 % ET 5225

A:9 w

s-c R = -
4| T]

First line contains column header(s)

Lorem =
L]

«{a Previnus ” s’ Finsh] [
—

24

) Running a Performance Test

Once you have finished creating and parameterizing the test scripts, you are ready to define and run a

test scenario.

Make sure that the connection pools are valid.

Defining the test scenario

A typical test scenario consists out of one or more scripts, i.e. database statements.

You can add a test script to the test scenario by enabling the script in the Test Suite (see 1).
Note that all parameters of the script should be defined and that the baseline execution time is
captured before you can add the script to the test scenario.

~ Test Suite

..':’_." PLSQL Example - DBMS_OUTPUT PL*SOL Example - DEMS_CUTPUT

L5[SQL Example - Spatial Query SQL Example - Spatial Query

,.'_,_S_." SQL Example Bind Variable SQL Example: Query With Parameter

Warning: Schedule a reasonable/realistic load behavior!

25

Defining the overall test goal

The next step is to define the test goal. Press the test goal button (see 1) in the Test Goal
pane to invoke the wizard.

In three steps you can define the overall test goal.

First, you have to specify the goal type. Then the overall number of database statements to
execute or the test duration and finally the maximum number of active (concurrent)
database statements allowed. The latter option is also dependent on the active license.
Database2test has support for two test goal types. A test based on the test runtime and a
test on the number of statement executions.

Select the preferred test goal and press Next.

% TestNext Software - Database2test 3 IEEE

Data ba Seztest 3 - Releasing Oracle Performance Potential.

Test Database Connection Poo (defaul)
@ Test {URADBIJ.G_HDMEl{El]ZDNVDEMDﬁUTU -]
Test Suite

@ Setup 1+-[EJ PLSQL Exanple - DEMS_UUIPUL PL*SQL Example - LBMS_UU1PU | — - — Y4 [’.J B ®
J5f sQ_Exampe - Spatial Query SGL Exampe - Spatal Query - - - SORE X
7 (5] 50. Exampe Bind Variable SCL Exampe: Query With Parameter - - - QWO X

X Lizense
@ =
L4

0 Hzlp and Support

r N
Set Testing Goal - Step 10f 3 ==

Specify the testing goal type:

) Number of statement executions
@ Test run-time
G add l sa][Veusa l
Test Goal

Fun the load tect for 3 minf @rreo || Nextdp | [@ = I 1 ﬁi@i]

Test Monitor

Performance %) Exec. Time Delay (ms) Load (stmtsimin) Active Statements
Elapsed (mm:s): 00:20 200 a0 w0 w0

Remaning (mm:ss): 00:20

Active Statements: o

Pending Statements: 0

Statements Passed/Faled: 0/2
Datzbase Performance: 0%
Avg. Bxec, Time Delay: 0 meec.
Database Comections: 0

Test status: Idle

— u v B 1 u u

[start Press Start to run te performance test.

Testnext software

Note that when either test goal is reached, the system will not terminate immediate but wait
for the active database statements to stop gracefully. This is the ramp-down phase of the
test.

Set Testing Goal - Step 2 of 4 -

Spedfv the test ~un-tire:

Teatrun time (hhemm): |00 5| |20 =

<3 Previcus ” Mext B I [aCanEI I

26

The last step is to define the maximum number of active statements allowed during the test. Setting
this value to 25 means that at any moment no more than 25 concurrent database statements will be
executed on the database server irrespective of the target load at script level.

Sct Testing Goal Step 2 of 4

=55)

Specify tha maximum numbar of active {simutanecus) stazement executiors:

Maximurn number of active satement executions:

FLE

43 2revious s Tinizh] [aCancel

Note: Database2test allows you to purchase a license to execute as many database statements as you

need to effectively test your Oracle Database.

For the (full functional) evaluation version, however, you are licensed to set a maximum of 2 active

database statements only.

Before you start the test you should familiarize yourself with the Test page. While the test is running
you can see how the Oracle Database performs in real time. You can view performance information on

the online performance monitors and in tabular form.

27

The Test section contains four panes. The Default Database Connection Pool, Test Suite, Test Goal and
the Test Monitor.

The Default Database Connection Pool shows the connection pool that will be used by all scripts that
are defined to use the default database connection pool.

The Test Suite pane lets you define the test scenario and view the run status, i.e. passed statement
executions (see 1), failed statement executions (see 2) and the performance for the passed statement
executions (see 3).

e = N
¢ TestNext Software - Datzbase2test 3 l-='- g
Data baSEZtest 3 = Releasing Oracle Performance Potential.
Test Datsbase Connection Foo (default)
ORANR1T1G_HOMF1-DR 11 20-MyDFMO-A1 TO -
Test Suite
@ Satup LEF PLSQL Example - DEMS_CUTPUT PL*SQL Example - CBMS_OUTPUT 81 33% MR E R
L] 50_ Example - Spatisl Query 5L Example - Spatal Query] 54% LENE X
G License] sQ. Example Bind Variable SQL Example: Query With Parameter 7 33% LYOEEAX
¥
0 Help and Support
Qus | [[Dsa | Desa |
4 i~ Teet Gozl
@ flun the load tost for 30 minutes with 3 masimun of 25 active (smultancous) statement cxcaitions. @5
i ?\at Monitor
i Performance (%) Exze. Time Delay (ms) Load (stmtssmin} Active Statements
Elapsed imm:ss): 01:25 00 0 a0 w0
Time Remaining: 28:35
Active Statements: 3 R
Pending statements: U abligel 160
Statements PassedfFailec: 237 f 17 “g L
Datebase Performance: 81% e . £
Avy. Exec, Time Delay: 67 mse,
Datbase Comecticns: 5
e
Test status: Running 1
u a u u
W son Press Ston n shutdonn the Inad test rarmaly. The system wil wait for « nning statsmen-s tn ston gracefilly
TectneXt software

The Test Goal pane shows the current testing goal.

The Test Monitor (see 4) shows four online (graphical) overall performance monitors together with the
tabular overall performance statistics for the running test scenario.

28

The following performance monitors are displayed during the test:

Performance (%) - shows the performance, i.e. the relation between the baseline execution time and
actual execution time (see What it means).

Load/Statements Per Minute — shows the actual and target number of database statements per
minute.

Execution Time Delay (ms) — shows the difference between the baseline execution time and the actual
execution times for the last 5 seconds.

Active Statements - shows the number of simultaneous running database statements.

The following online statistics are displayed during the test:

Elapsed (mm:ss) — The elapsed time for the running test.

Time/Users remaining — The remaining time or database statements.
Active Statements — The number of currently running database statements.
Pending Statements — The number of pending database statements.

Statements Passed/Failed — The total number of passed statement executions and the total number
of failed statement executions.

Performance — The actual performance. The performance is the relation between the baseline
execution time and the actual execution time.

Avg. Exec. Time Delay — the average difference between the baseline execution time and the actual
execution time in milliseconds for each database statement execution over the last 5 seconds.

Database Connections — total number of opened database connections.

Status — current status of the load test: running, stopping, aborting and stopped.

29

Now you are ready to actually run the performance test.

Database2test has two run modes. Interactive (GUI) and batch (silent) mode. Batch or silent mode is
required to schedule a performance test as a background job. You can run a performance test in batch
mode using the operating system script console.bat. This script is located in the bin folder of the
Database2test software.

Before running the test in batch mode you should first define you test scenario using the graphical
interface.

For running the performance test in interactive (GUI) mode you have to press the Start button on the
Test page (see 1).

~ Test Goal
Run the load test for 5 minutes with a maximum of 25 active (simultaneous) statement executions.
~ Test Monitor
.) Performance (%) Exec. Time Delay {n
Elapzed (mm:ss): 00:00 200 200
Remaining {mm:ss): 00:00
Active Statements: a
Pending Statements: a
Statements Passed/Failed: 070 q
Database Performance: 0%
Ava. Exec. Time Delay: 0 msec.
Database Connections: a
Test status: Idle
1} =200

Note that you can stop and abort the test at any time. If you stop the test no more new database

statements are executed but the system will wait for the active database statements to complete

gracefully.

However, when you abort the test no more new database statements are executed and the active
database statements are terminated forcefully.

30

> Analyzing The Test Results

At completion of the performance test, Database2test will automatically generate comprehensive
graphical reports (MS Excel) using the captured performance statistics and show you a Summary
Report dialog.

% TestNext Software - Database2test 3 [— =] = |

Data baseztest 3 = Releasing Oracle Performance Potential.

- Tect Daisbace Connection Poal (default)

\a Tost % [bnmmmﬁcma—nanznﬂvnmn-@u‘m - J
Test Suie

@ Setup

“:':V' License

/2] PLSQL Examplz - DEMS_OUTPUT PL¥SQL Example - DBMS_OUTFUT 21 0 LX)
/5 5QL Example - Spatial Juery SQL Example - Spatial Query 121 0 56% LM
5] 5QL Example Bind Variable SQL Example: Query With Parzmeter 121 0 82% L)

& [
XXX

]

r N
% Performanca Test Summary =
‘9 Help and Suppor 2

Performance Test Summary

The performance test run time was ((hhl:mm:ss): 02:00

During the test a totzl of I62 statements were executed successtully. a//,
The target load of the test was achizved.

During the performance tes: no sta:ement “ailed.

The execution time compared to the baseline (single user) execution time, i.e.
the performance, was 78%. Which means that the (average) time to execute a
statement increased from 291 mill seconcs to 363 milliseconds

-~ Tect Gosl

(3 run the foad ted) @
You an press the Repart bifton th analyze the grephical details of the test

Test Monitor

(stmtsimin) Active Statements

Zlapsed (mm:ss):
Time. v
Active Satemen:s: 0 52
“ending Statements: v aybhag &
Statements Pass=d/Faled: 363 /2 8

Databasz Performance: TBY%

S
avg. Exec. TimeDelay: 78 mszc.

Jatabass Connections: 0

Test stas: Stoppzd

Prews Stort 0.1 she e o3

tneXt software

The performance reports are saved to the output directory (see Settings Page). The performance
reports have the following naming convention:

Whole scenario report: database2test_<yyyymmdd>-<hhmiss>.xls
Per script reports: <script name>_<yyyymmdd>-<hhmiss>.xls

31

During the performance test, Database2test captures performance statistics and error and log
information to the log directory and the output directory. The output directory can be set in the
Settings section.

Database2test.err (log directory) — this file contains a log of errors that might be useful for problem
determination. This log is saved as a text file.
An error log entry has the following format:

[timestamp] [script name]([session id]): [log message]

Database2test.log (log directory) — this file contains runtime information about events during the test
scenario. It shows among others the runtime parameter values, etc.

Database2test.csv (output directory) — this file contains whole scenario performance statistics
captured by Database2test every five seconds during the test.
This file is in a comma-separated values (CVS) format and can be imported into a spreadsheet directly.

<script name>.cvs (output directory) — Besides the whole scenario performance statistics
Database2test captures also the performance statistics for each script. This file is also in a comma-
separated values (CVS) format and contains the same metrics as the whole scenario performance

metrics.

The graphical Excel reports are generated from the csv files above.

32

> What It Means

Elapsed — Elapsed time since the start of the performance test.

Active Statements — Total number of active (running) database statements.

Pending Statements - Delayed statement executions due to active statement execution limit.

Passed Statements — Total number of passed database statements.

Failed Statements — Total number of failed database statements.

Execution time — The time to execute the database statement on the database server.

Actual Performance — The statement execution performance of the database for the last 5 seconds. A
performance more than 100% means that the test execution time decreased compared to the baseline
execution time. A performance less than 100% means that the test execution time increased
compared to the baseline execution time.

Overall performance — The overall performance

Target load — Scheduled target load in statement executions per minute.

Actual load — Established load during the test in statement executions per minute.

Generated Load — Generated database statements per minute through Database2test.

Connection Setups — total number of database connections during the test.

Cumulative execution time (sec) — Sum of the execution times of all database statement executions
during the test.

Cumulative baseline execution time (sec) - Sum of the baseline execution times for the database
statement executions.

Cumulative Gross Execution Time (sec) — Sum of only the positive delays for the baseline and actual
execution times of the database statement executions during the test.

Execution time delay per statement execution (msec) — Average difference between the baseline
execution times and the actual execution times during the test over the last five seconds.

Average execution time delay per statement execution (msec) — Average difference between the

baseline execution times and the actual execution times during the test for all database statement
executions (in milliseconds).

33

